Errata

This document describes the use of the Telos 2101 AP component from the Microsoft
Visual C++ environment. The example uses version 1 or the AP component. The general
approach remains the same for version 2 but the name of the control and some function

prototypes are changed.

2101 API Author: Ioan L. Rus

Telos 2101 ActiveX Control with C++

The Telos 2101 ActiveX (TLSAPX) control exposes the application programming
interface (API) for System 2101. The specific details are shown for Visual C++ 6.0 but
the same ideas can be applied to any other C++ tool.

This example uses a simple dialog-based application to exercise the API functions
provided by the TLSAPX control. The example illustrates the basic approach to using
the control but it does not exercise the entire API. Although you will have to adapt this
example to suit your specific needs, the basic steps should remain the same.

Using the TLSAPX from Visual C++

STEP 1: Start Visual C++. Start a new “MFC AppWizard (exe)” project and click Next.
Choose a “Dialog based” application:
MFC AppWizard - Step 1 s - 2| x|

- Application whhat tupe of application would vou like to create?

" Single document
" Multiple documents
* Dislog based

¥ | Document/view architectune suppaort?

Wwhat language would you ke your rezources in?

| Engiish [United States] (APPwZENU.DLL x|

¢ Back I M et > I Finizh Cancel

Click Next.

Rev. 2001.08.27-1 Page 1 of 6

2101 API Author: Ioan L. Rus

On the next screen make sure that the “ActiveX Controls” checkbox is selected:
MFC AppWizard - Step 2 of 4 ed |

wihat features would pou like o include?

Application

W About box
[Context-zenzitive Help
¥ 3D controls

‘whhat ather support would vou like to include?

Close

Abor:dep..

[Automation
¥, Actives Controls

Wu:uu!?ynu like to include W54 support?

Editing Control: I Record

F Check Box @ Radic Button
o Radic Button

[Windows Sockets

Pleaze enter a title far pour dialog;

|ﬁlF'_Test

¢ Back I Mest = I Finizh Cancel

Click Next and complete the AppWizard with your desired defaults.

STEP 2: Go to the dialog view in the resource editor and right-click on the dialog. Select

“Insert ActiveX control” from the pop-up menu.
R R T R RN Ll
ok
Cancel
g Cut 4'
Copty
E, Paste

3 Insert Ackiver Contral. ., m

Size Lo Can@nt
|E'4‘-' Aligm Left Edges

ﬁ fliam Top Edges

?’ Check Mnemonics

g‘& Classwizard, .,
Events...

Properties

Rev. 2001.08.27-1 Page 2 of 6

2101 API Author: Ioan L. Rus

Choose “AP Class” from the pop-up dialog:

Insert ActiveX Control ed |
Activer control:
adbanner Clazs -
Adobe Acrobat Control for Actives Cancel |
.ﬁ.pplicatinﬂata Cantral
Apphwfizands. Subiwizard

ArgumentSettings Class

AxBrowze AxBroveer

Blue Sky Software ‘WebPopupHelp
Calendar Contral 8.0

CODEContiol Class hd

Path:
C:4loan-embs21 074 TLS AR D ebugh T LS&F:. dil

A white rectangle will be displayed on the dialog marked with the letters “AP”.
Right-click on the rectangle and make sure that the “Visible” property is not selected.

Step 3: Make sure that the AP control is selected and press CTRL-W to bring up the
ClassWizard dialog. Click the “Member Variables” tab. Make sure the ID of the AP
control is selected then click the “Add Variable” button. The following message will be
displayed:

Microsoft Yisual C++ L X

The Activer Contral "AP Class" has not been inserted inko the project. Developer Studio will do this now and
generate a C++ wrapper class for it,

(] 4 & I Zancel

Click the OK button and a new class will be generated for the control. When prompted to
name the variable enter “m_AP” as the variable name'.

Step 4: In the OnlnitDialog() function for your application dialog add the following lines
of code:

_ try

{
m_AP.OpenControl () ;

}

~_except (EXCEPTION EXECUTE HANDLER)

{
AfxMessageBox ("OpenControl failed!");
return;

}

AfxMessageBox ("OpenControl OK!");

' You may use any name here but the rest of the example will assume the variable is named m_AP.

Rev. 2001.08.27-1 Page 3 of 6

2101 API Author: Ioan L. Rus

The thing to note here is that you must use exception handling to obtain the
success/failure status of each function call.

Remember that you must also call CloseControl when the application terminates to

release any memory used by this control. You would need to detect the application close
event and add the following lines:

_ try
{
m_AP.CloseControl () ;
}
~_except (EXCEPTION EXECUTE HANDLER)
{
AfxMessageBox ("CloseControl failed!");
return;

}

AfxMessageBox ("CloseControl OK!") ;

STEP 5: Go back to the dialog resource and add a “Connect” button. Use the
ClassWizard to add a handler for this button. In the handler use the following code:

void CTlsapxVCDlg::0OnButtonConnect ()

{

_ try

{
m AP.Connect ("localhost","user", "pass");

}

__except (EXCEPTION EXECUTE HANDLER)

{
AfxMessageBox ("Connect failed!");
return;

}

AfxMessageBox ("Connect OK!");
}

You should replace the connect parameters (host, user name, password) with values that
are valid for the 2101 system you are using.

Add another button for “Enumerate shows” with the following handler:

void CTlsapxVCDlg::OnButtonEnumerateShows ()

{

_ try

{
m AP.EnumerateShows () ;

}

__except (EXCEPTION EXECUTE HANDLER)

{
AfxMessageBox ("EnumerateShows failed!");
return;

}

AfxMessageBox ("EnumerateShows OK!") ;

}

Rev. 2001.08.27-1 Page 4 of 6

2101 API Author: Ioan L. Rus

STEP 6: We are now ready to add handlers for the events generated by the ActiveX
control. Press Ctrl-W to bring up ClassWizard and select the “Message Maps” tab.
MFC ClassWizard T 7| =]

tezzage Maps tember Y ariables | Autamation I Activer Events I Clazz Info |

Project; Clazz name; Add Clasz.. - |

|&P_Test x| |cap_TestDig |
C:h AP TestAP TestDlgh, C:h WP _TesthdP TestDlocpp

Object [0 Meszages: Delete Fumction |
CAP TestDl E numerateShowsCallback, .
T R Edit Code

IDCAMCEL ErnurnerateDirectorzCallback,
DOk, SendShowlnfo
Sendhode
SendShowChange
SendRecord j
kember functions:
YW Dol ataEschange -
W OnlnitDialog QM _wihd_IMITDIALOG
W OnPaint OM_wihd_PAINT
W OnGuemDraglcon Or_WwW_QUERYDRAGICOM
W OnSusCommand OM St SYSCOMMARD j
Dezcription; method EnumerateShowzCallback

]9 I Cancel |

On the left select the ID of the control then on the right select the message of interest.
Click the “Add Function...” button to add a handler for this event. You should add a
handler for each of the events provided. When done click the “Edit Code” button.

STEP 7: Add the following code for the EnumerateShowsCallback handler:

void CTlsapxVCDlg: :OnEnumerateShowsCallbackApl (LPCTSTR strShowName, long bRequiresPass,
long bIsActive, LPCTSTR strHostName, long bIsLast)
{

CString str;

if (bIsActive)
{

str.Format ("Show %$s: Active on '$%s': %s %s",
strShowName, strHostName,
bRequiresPass ? "REQUIRES PASS" : "NO PASSWORD",
bIsLast ? "LAST ONE" : "THERE ARE MORE") ;
}
else

{
str.Format ("Show %$s: Not active: %s %s",strShowName,
bRequiresPass ? "REQUIRES PASS" : "NO PASSWORD",
bIsLast ? "LAST ONE" : "THERE ARE MORE") ;
}

AfxMessageBox (str) ;

Rev. 2001.08.27-1 Page 5 of 6

2101 API Author: Ioan L. Rus

Please note that this example handler only displays the information received to the
screen. Your application may want to store the information received to display it to the
user in a friendlier manner.

Add the following code for the SendError handler:

void CTlsapxVCDlg: :0nSendErrorApl (long nErrorNumber, LPCTSTR strErrorText)
{
CString str;
str.Format ("ERROR (%d) : %$s",nErrorNumber, strErrorText) ;
AfxMessageBox (str) ;

}

STEP 8: We’re now ready to put it all together. Compile the project and run it. The
application should display a “OpenControl OK” message. Click the “Connect” button on
the dialog. You should receive a “Connect OK” or “Connect failed” message. If connect
fails then check to make sure the 2101 system is up and running. Also check the host
name, user name and password to make sure they are valid.

Once connect succeeds click the “Enumerate Shows” button. You should receive one
message for each show defined in the system. The message box will indicate if the show
is active and if so the name of the host where it is running.

You should also notice that the SendError handler receives events from the control. Even
on success the SendError handler receives messages to indicate success. Success codes
are less than 1000 while error codes are greater than 1000.

Summary

This example application showed how to use the 2101 ActiveX control from a C++
environment. The specific details are for Visual C++ 6.0 but the same ideas can be
applied to other C++ tools.

Although this example does not cover the entire 2101 API it illustrates the basic

techniques for communicating with the ActiveX control. The example can be easily
extended to cover all functionality needed by your application.

Rev. 2001.08.27-1 Page 6 of 6

	Telos 2101 ActiveX Control with C++
	Using the TLSAPX from Visual C++
	Summary

	Errata_v2 vc++.pdf
	Errata

